Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation

Roy Schwartz1, Omri Abend1, Roi Reichart2 and Ari Rappoport1

1The Hebrew University, 2MIT
In proceedings of ACL 2011
Outline

• Introduction

• Problematic Gold Standard Annotation

• Sensitivity to the Annotation of Problematic Structures

• A Possible Solution – Undirected Evaluation

• A Novel Evaluation Measure
Introduction
Dependency Parsing

```
we   want   to   play   ROOT
```
Introduction

Related Work

• Supervised Dependency Parsing
 – McDonald et al., 2005
 – Nivre et al., 2006
 – Smith and Eisner, 2008
 – Zhang and Clark, 2008
 – Martins et al., 2009
 – Goldberg and Elhadad, 2010
 – *inter alia*

• Unsupervised Dependency Parsing (unlabeled)
 – Klein and Manning, 2004
 – Cohen and Smith, 2009
 – Headden et al., 2009
 – Blunsom and Cohn, 2010
 – Spitkovsky et al., 2010
 – *inter alia*
Introduction
Unsupervised Dependency Parsing Evaluation

• Evaluation performed against a gold standard

• Standard Measure – *Attachment Score*
 – Ratio of correct *directed* edges

• A single score (no precision/recall)
Introduction
Unsupervised Dependency Parsing Evaluation

Example

- **Gold Std:**
 - PRP (we)
 - VBP (want)
 - TO (to)
 - VB (play)
 - **ROOT**

- **Score: 2/4**
 - PRP (we)
 - VBP (want)
 - TO (to)
 - VB (play)
 - **ROOT**
Problematic Gold Standard Annotation

• The gold standard annotation of some structures is Linguistically Problematic
 – I.e., *not under consensus*

• Examples
 – Infinitive Verbs
 (Collins, 1999)
 to \rightarrow play
 (Bosco and Lombardo, 2004)
 – Prepositional Phrases
 (Johansson and Nugues, 2007)
 in \rightarrow Rome
 (Yamada and Matsumoto, 2003)
Problematic Gold Standard Annotation

• Great majority of the problematic structures are local
 – Confined to 2–3 words only
 – Often, alternative annotations differ in the direction of some edge
 – The controversy only relates to the *internal* structure

want to ↔ play chess

• These structures are also very frequent
 – 42.9% of the tokens in PTB WSJ participate in at least one problematic structure
Problematic Gold Standard Annotation

• Gold standard in English (and other languages) – converted from constituency parsing using head percolation rules

• At least three substantially different conversion schemes are currently in use for the same task
 1. Collins head rules (Collins, 1999)
 – Used in e.g., (Berg-Kirkpatrick et al., 2010; Spitkovsky et al., 2010)
 2. Conversion rules of (Yamada and Matsumoto, 2003)
 – Used in e.g., (Cohen and Smith, 2009; Gillenwater et al., 2010)
 3. Conversion rules of (Johansson and Nugues, 2007)
 – Used in e.g., the CoNLL shared task 2007, (Blunsom and Cohn, 2010)

14.4% Diff.

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Problematic Gold Standard Annotation

(Collins, 1999)
(Yamada and Matsumoto, 2003)
(Johansson and Nugues, 2007)
Problematic Structures

Very Frequent

3 Substantially Different

Gold Standards

Evaluation Problem
Sensitivity to the Annotation of Problematic Structures

Test → Trained Parser

< 1% to play

Test → Modified Parser

Gold Standard Modified Parameters

X 3 leading Parsers

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Sensitivity to the Annotation of Problematic Structures

<table>
<thead>
<tr>
<th>Model</th>
<th>Original</th>
<th>Modified</th>
<th>Modified - Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>km04</td>
<td>34.3</td>
<td>43.6</td>
<td>9.3</td>
</tr>
<tr>
<td>cs09</td>
<td>39.7</td>
<td>54.4</td>
<td>14.7</td>
</tr>
<tr>
<td>saj10</td>
<td>41.3</td>
<td>54</td>
<td>12.7</td>
</tr>
</tbody>
</table>

- *km04* – Klein and Manning, 2004
- *cs09* – Cohen and Smith, 2009
- *saj10* – Spitkovsky et al., 2010

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Current evaluation does not always reflect parser quality.
A Possible Solution

Undirected Evaluation

• **Required** – a measure indifferent to alternative annotations of problematic structures

• **Recall** – most alternative annotations differ only in the direction of some edge

• **A possible solution** – a measure indifferent to edge directions

• **How about undirected evaluation?**
A Possible Solution
Undirected Evaluation

• Gold standard:

PRP (we) VBP (want) TO (to) VB (play) ROOT

• Induced parse, with a flipped edge

PRP (we) VBP (want) TO (to) VB (play) ROOT

No head Two heads

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
A Possible Solution
Undirected Evaluation

• Gold standard:
 - Undirected Evaluation
 - \(\text{PRP} \to \text{VBP} \to \text{TO} \to \text{VB} \to \text{ROOT} \)
 - 3/4 (75%) This is the minimal modification!

• Induced parse, with a flipped edge
 - \(\text{PRP} \to \text{VBP} \to \text{TO} \to \text{VB} \to \text{ROOT} \)
 - Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
The Neutral Edge Direction (NED) Measure

• Undirected accuracy is *not indifferent* to edge flipping

• We will now present a measure that is – *Neutral Edge Direction (NED)*
 – A simple extension of the undirected evaluation measure
 – Ignores edge direction flips
Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
The NED Measure

• Therefore, NED is defined as follows:
 – X is a correct parent of Y if:
 • X is Y’s gold parent or
 • X is Y’s gold child or
 • X is Y’s gold grandparent

want

to ↔ play

Gold Standard

want

to → play

linguistically plausible parse

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
NED Experiments
Difference Between Gold Standards

- NED substantially reduces the difference between alternative gold standards
NED Experiments

Sensitivity to Parameter modification

- **NED** substantially reduces the difference between parameter sets
- The sign of the NED difference is predictable (see paper)
Discussion

• Unsupervised parsers train on *plain text*
 – Choosing the “wrong” (*plausible*) annotation should not be considered an error
 – Use NED!

• Supervised parsers train on *labeled data*
 – They get the correct annotation as training input

• Nevertheless, NED can be used to *better understand* the type of errors performed by *supervised* parsers
 – Better suited than using undirected evaluation measure
Future Work

• Find a more fine-grained measure
 – Evaluating Dependency Parsing: Robust and Heuristics-Free Cross-Annotation Evaluation (Tsarfaty et al., to appear in EMNLP 2011)

• Resolve conflicts in annotation level
Summary

• Problems in the evaluation of unsupervised parsers
 – **Gold Standards** – 3 used (~15% difference between them)
 – **Current Parsers** – very sensitive to alternative (plausible) annotations. Minor modifications result in ~9–15% performance “gain”
 – **Undirected Evaluation** – does not solve this problem

• Neutral Edge Direction (NED) measure
 – Simple and intuitive
 – Reduces difference between different gold standards to ~5%
 – Reduces undesired performance “gain” (~1–4%)
 – Still *indicative* of *quality difference*
 • See more experiments demonstrating NED’s validity (see paper)
Take–Home Message

• We suggest reporting NED results along with the commonly used attachment score

Many thanks to
• Shay Cohen
• Valentin I. Spitkovsky
• Jennifer Gillenwater
• Taylor Berg-Kirkpatrick
• Phil Blunsom

http://www.cs.huji.ac.il/~roys02/software/ned.html